
Custom Streaming Setup

Amolith

2020-04-26T20:24:38-04:00

Contents
The search for a platform . 1
NGINX & RTMP . 2
Browser playback . 3
Web chat . 4
Actually streaming . 7
Summary . 7
References . 7

The other day, I decided that I wanted to start streaming. I’ll definitely be
playing some games but I might also stream some other things like me playing
music. We’ll see where that goes. In any case, I don’t like relying on third
parties for things and didn’t want to use Twitch so I started figuring out how
to build my own open source and privacy-friendly “platform” (which is really
just a page.)

The search for a platform
Before settling on my own custom thing, I did some digging into ready-made
platforms I could just throw on one of my servers and run. Two of the ones I
found were OpenStreamingPlatform and Restreamer. The latter isn’t exactly
what I was looking for but it could have worked quite well. The former, at first
glance, was absolutely perfect. On a functional level, it still is. However, take a
look at the installation guide.

<rant>

Steps 3 and 7 are unnecessary unless you feel like manually compiling your
web server; it’s already available in the Debian repos and, by extension,
Ubuntu’s. It’s even been backported to Stretch. In step 4, he has sed -i
's/appendfsync everysec/appendfsync no/'. Like so many application
developers, he’s assuming that this is the only project that will be installed
on the system. If someone is already using redis in production and they have
a different value there, that command will fail. In step 9, the commands

1

https://openstreamingplatform.com/
https://datarhei.github.io/restreamer/
https://wiki.openstreamingplatform.com/Install/Manual
https://packages.debian.org/buster/libnginx-mod-rtmp

are copying the SystemD service files to /lib/systemd/ but this is where
the package manager, apt, stores its services. When you have your own that
you’re writing or copying from somewhere else, best practise is to put them in
/etc/systemd/system. In addition, all of this is scripted for the “standard”
install. Yes, you’re always supposed to review scripts before running them but
who really does that? When I see a project whose only supported installation
method is a script, I nope right on out of there for exactly this reason. I know
how my system is set up and I know how I want it set up. I can’t stand it
when they assume they know what’s best. Just tell me what you recommend
and I’ll make decisions from there.

</rant>

NGINX & RTMP
RTMP stands for Real-Time Messaging Protocol and facilitates streaming au-
dio, video, and other data over the internet in real-time. The NGINX module
mentioned above adds functionality to NGINX that allows it to handle RTMP
streams and turn them into something a browser or media streaming client can
use. Connecting directly via rtmp://example.com/live/stream is not very
widely supported so protocols such as MPEG-DASH and HLS are used instead.

On Debian-based systems, adding RTMP functionality to NGINX is as simple as
apt install libnginx-mod-rtmp. After that, you’ll need to add some things
to your nginx.conf and whatever host file you’re using for your website.

1 rtmp {
2 server {
3 listen 1935;
4 application live {
5 deny publish all;
6 allow publish 127.0.0.1;
7 live on;
8 interleave on;
9 hls on;

10 hls_path /tmp/hls;
11 hls_fragment 15s;
12 dash on;
13 dash_path /tmp/dash;
14 dash_fragment 15s;
15 }
16 }
17 }

1935 is the default RTMP port. deny publish all means you are deny-
ing anyone from publishing a stream (that includes you. allow publish
127.0.0.1 allows local connections to publish content. I’m using this as a form

2

https://wikipedia.org/wiki/Real-Time_Messaging_Protocol
https://wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP
https://wikipedia.org/wiki/HTTP_Live_Streaming

of authentication—before streaming anything, I have to tunnel my connection
to my server via SSH or a VPN. At the moment, I’m using SSH:

1 ssh -L 1935:localhost:1935 user@example.com

The other options are just the basics needed to get DASH and HLS to work.
The only other thing to do is use NGINX as a reverse proxy (sort of) to serve
the streams. Add this to your site’s virtual host.

1 location /dash {
2 root /tmp;
3 }
4 location /hls {
5 root /tmp;
6 }

That’s it! Now you’ll need to test your stream and verify that it actually works.
1 ffmpeg -re -i video.mp4 -vcodec copy -loop -1 -c:a aac -b:a 160k -ar

44100 -strict -2 -f flv rtmp://example.com/live/stream

This command has FFmpeg play the video and stream it to the server. You
should then be able to open the stream in something like VLC or MPV and
watch it from anywhere.

1 mpv https://example.com/dash/stream.mpd

However, I also wanted to embed it in a website and this is where it gets a little
unstable.

Browser playback
dash.js is currently one of the best ways to play a live stream in a browser
plus it’s pretty easy to work with. The code can be found on GitHub. Using
the setup with NGINX I detailed above, this should work perfectly fine out of
the box.

1 <div>
2 <video id="videoPlayer" poster="/assets/jpgs/stream.jpg"

controls></video>
3 </div>
4 <script src="/assets/js/dash.all.min.js"></script>
5 <script>
6 (function(){
7 var url = "/dash/stream.mpd";
8 var player = dashjs.MediaPlayer().create();
9 player.initialize(document.querySelector("#videoPlayer"), url,

true);
10 })();

3

https://www.videolan.org/
https://mpv.io/
https://github.com/Dash-Industry-Forum/dash.js

11 </script>

Web chat
The last thing every stream needs is something for web chat. I tried a few
different solutions and had mixed results. The first was KiwiIRC but the iframe
wouldn’t even finish loading because it connected to so many third parties with
a lot of tracking. It functions very well and I might set it up on my own site
eventually but it was a bit much to go through at the time. As an intermediate
solution, I embedded my instance of The Lounge, a fully-functional web-based
IRC client. This loaded perfectly right out of the box but it wasn’t quite what
I wanted; there were too many options and the friends of mine who tested it
got frustrated because some of the essential UI elements were hidden due to the
small viewport. It’s just not quite suitable for embedded webchat.

Finally, I landed on qwebirc and it was pretty much exactly what I wanted.
When the iframe loads, you’re prompted to enter a nick, you click connect, wait
a minute, and done! My one complaint is that the theme is very bright but I’ll
work on that later on. It’s good enough for now :wink:

EDIT: Since the time of writing, I have switched to hosting KiwiIRC on Se-
cluded.Site so all of the trackers and third parties aren’t in use. My configs are
below but I recommend going through the wiki and making your own decisions.

/etc/kiwiirc/config.conf

1 logLevel = 3
2 identd = false
3 gateway_name = "webircgateway"
4 secret = "changeme"
5
6 [verify]
7 recaptcha_secret = ""
8 recaptcha_key = ""
9

10 [clients]
11 username = "%i"
12 realname = "KiwiIRC on secluded.site"
13
14 [server.1]
15 bind = "0.0.0.0"
16 port = 7264
17
18 [fileserving]
19 enabled = true
20 webroot = /usr/share/kiwiirc/
21

4

https://kiwiirc.com/
https://irc.nixnet.services
https://thelounge.chat
https://qwebirc.org/
https://kiwiirc.com/
https://chat.secluded.site
https://chat.secluded.site
https://github.com/kiwiirc/kiwiirc/wiki/Configuration-Options

22 [transports]
23 websocket
24 sockjs
25 kiwiirc
26
27 [reverse_proxies]
28 127.0.0.0/8
29 10.0.0.0/8
30 172.16.0.0/12
31 192.168.0.0/16
32 "::1/128"
33 "fd00::/8"
34
35 [upstream.1]
36 hostname = "irc.nixnet.services"
37 port = 6697
38 tls = true
39 timeout = 5
40 throttle = 2
41 webirc = ""

/etc/kiwiirc/client.json

1 {
2 "windowTitle": "Secluded.Site Chat",
3 "startupScreen": "welcome",
4 "kiwiServer": "/webirc/kiwiirc/",
5 "restricted": true,
6 "hideAdvanced": true,
7 "showAutoComplete": true,
8 "showSendButton": true,
9 "sidebarDefault": "nicklist",

10 "theme": "dark",
11 "themes": [
12 { "name": "Default", "url": "static/themes/default" },
13 { "name": "Dark", "url": "static/themes/dark" },
14 { "name": "Coffee", "url": "static/themes/coffee" },
15 { "name": "GrayFox", "url": "static/themes/grayfox" },
16 { "name": "Nightswatch", "url": "static/themes/nightswatch"

},
17 { "name": "Osprey", "url": "static/themes/osprey" },
18 { "name": "Radioactive", "url": "static/themes/radioactive"

},
19 { "name": "Sky", "url": "static/themes/sky" }
20],
21 "buffers" : {

5

22 "messageLayout": "compact",
23 "show_timestamps": false,
24 "show_hostnames": false,
25 "show_joinparts": false,
26 "show_topics": true,
27 "show_nick_changes": true,
28 "show_mode_changes": false,
29 "traffic_as_activity": false,
30 "coloured_nicklist": true,
31 "colour_nicknames_in_messages": true,
32 "block_pms": true,
33 "show_emoticons": true,
34 "extra_formatting": true,
35 "mute_sound": false,
36 "hide_message_counts": false,
37 "show_realnames": false,
38 "default_kick_reason": "Your behaviour is not conducive to this

environment.",
39 "shared_input": false,
40 "show_message_info": true,
41 "share_typing": true,
42 "flash_title": "off",
43 "nicklist_avatars": true,
44 "show_link_previews": true,
45 "inline_link_previews": true,
46 "inline_link_auto_preview_whitelist":

"secluded.site|nixnet.services",
47 "channel": "#secluded"
48 },
49 "startupOptions" : {
50 "server": "irc.nixnet.services",
51 "port": 6697,
52 "tls": true,
53 "direct": false,
54 "channel": "#secluded",
55 "nick": "viewer?",
56 "greetingText": "Welcome!",
57 "infoBackground": "",
58 "infoContent": ""
59 }
60 }

6

Actually streaming
Once you’re ready to start streaming content, I recommend using OBS
Studio. If you’re noticing issues with stream performance, play around with
your output resolution and FPS—those are the biggest factors. To use OBS
with NGINX, you’ll need to go to Settings, Stream, and set Server to
rtmp://localhost/live/. If you’re using my configs as they are, the key will
need to be stream. Literally every component requires specific paths so, unless
you’re careful, things will break and you’ll spend hours trying figure it out like
I did. Also don’t forget that the connection has to be tunnelled if you want
authentication as I mentioned above. If you don’t have localhost:1935 on
your streaming machine tunnelled to port 1935 on your server, OBS is going to
throw errors about not being able to connect.

Summary
I’m pretty proud of the set up I have now but it could still do with some
improvements. For example, I plan to mess with the CSS and make both the
video and chat panes much wider as well as side-by-side rather than on top of
each other. Everything is crammed together and it’s not a very good experience.

References
This post has pieces taken from a few other articles and sites that also deserve
a mention as well as a read. NGINX actually has an official blog post on setting
up RTMP streaming (though they compile NGINX from source as well) that
was a massive help. I also found another post that is very similar to this one
about HTML5 Live Streaming with MPEG-DASH. A good number of the parts
are the same but I used the NGINX module in Debian repos and they used a fork
of it with additional features. My NGINX setup was mostly from the NGINX
blog post and the embedded stream was primarily from Inanity’s. I figured out
some of the components I could use for all of this from Drew DeVault.

This was posted as part of #100DaysToOffload, an awesome idea from Kev
Quirk. If you want to participate, just write something every day for 100 days
and post a link on social media with the hashtag!

7

https://github.com/obsproject/obs-studio/
https://github.com/obsproject/obs-studio/
https://www.nginx.com/blog/video-streaming-for-remote-learning-with-nginx/
https://www.isrv.pw/html5-live-streaming-with-mpeg-dash
https://live.drewdevault.com/
https://100daystooffload.com/
https://fosstodon.org/@kev/104053977554016690
https://kevq.uk/
https://kevq.uk/

	The search for a platform
	NGINX & RTMP
	Browser playback
	Web chat
	Actually streaming
	Summary
	References

