
Vim as a Markdown Editor

Amolith

2020-04-30T23:06:59-04:00

Contents
Visuals . 2
Spell check . 2
Goyo . 2
vim-markdown . 3
General Vim things . 3
Edit . 4

Time stamps . 4
Portable autocmds . 4

I’ve recently decided to attempt to keep all of my notes and everything I’ve
learned in a Zettelkasten. After reading Daryl Sun’s blog post, I started looking
more into the method and found it incredibly intriguing. I’ve tried the “Evernote
way” of throwing everything I come across in a single place but it inevitable gets
lost. I don’t remember what it was called but I tried another app that actually
tags your files and organises them in a nice manner. This worked well for the
most part but the graphical client was badly optimised Electron and very heavy.
I’ve also tried keeping notes in books but I was never really able to keep up with
any of it. The thing that is especially compelling about a Zettelkasten is that I
put everything I learn in a single text file but link around to as many different
ideas as I can, drawing my own connections for me to rediscover later on.

Because it’s all in a simple text file, I’m also able to create a keybinding in
Sway that will open it in Vim, jump to the bottom, and have a nice markdown
environment ready for me to write in. It did take a bit of configuration and
looking around for different plugins but I’m very happy with what I have so far.

The first thing is telling Vim to treat all .md files as Markdown

1 " Treat all .md files as markdown
2 autocmd BufNewFile,BufRead *.md set filetype=markdown

1

https://zettelkasten.de/
https://write.privacytools.io/darylsun/100-days-to-offload-day-4
https://github.com/swaywm/sway/

Visuals
In a long text file with a great many lines, it can be useful to find your cursor
quickly without having to search around the screen for it.

1 " Highlight the line the cursor is on
2 autocmd FileType markdown set cursorline

It can also be nice to not see a ton of [links](https://example.com) and **bold**
or *italic* text everywhere. Sure, my eye has gotten used to it but still. I’d
rather have my terminal actually render bold text as bold.

1 " Hide and format markdown elements like **bold**
2 autocmd FileType markdown set conceallevel=2

If you use the vim-markdown plugin mentioned further on, I recommend using
its option for concealing rather than Vim’s.

Spell check
One of the things every good editor needs is spell check and Vim is no exception.
This line enables spell check with British English for all markdown files.

1 " Set spell check to British English
2 autocmd FileType markdown setlocal spell spelllang=en_gb

Here’s a short crash course in Vim spelling commands: - [s to search for mis-
spelled words above the cursor -]s to search for misspelled words below the
cursor - z= to see replacement suggestions - zg to add the word to your dictio-
nary

Goyo
The very first component is something I use across all markdown files. Goyo
is one of the first plugins I install on any machine I’ll be writing with. It
enables a “distraction-free writing environment” and I absolutely love it. It
disables pretty much all visual elements in Vim except for what mode you’re
in: visual, command, insert, etc. I have a keybinding set to quickly open/close
Goyo because there is an odd issue when I switch workspaces to and away from
Vim. With two taps of Ctrl+g, it’s back to normal.

1 nnoremap <C-g> :Goyo<CR>

Another line in my Vim config automatically opens Goyo for all markdown files:

1 autocmd FileType markdown Goyo

2

https://github.com/junegunn/goyo.vim

vim-markdown
That latest plugin I installed is vim-markdown and it is wonderful. I really
recommend reading about all of the options but here’s what I have set.

1 " Configuration for vim-markdown
2 let g:vim_markdown_conceal = 2
3 let g:vim_markdown_conceal_code_blocks = 0
4 let g:vim_markdown_math = 1
5 let g:vim_markdown_toml_frontmatter = 1
6 let g:vim_markdown_frontmatter = 1
7 let g:vim_markdown_strikethrough = 1
8 let g:vim_markdown_autowrite = 1
9 let g:vim_markdown_edit_url_in = 'tab'

10 let g:vim_markdown_follow_anchor = 1

In addition to the rest of the awesome features, the main one I wanted is the
last: follow_anchor. With this, I can create internal links within the same
markdown document and jump between them with ge. It also lets me open
both files and URLs from within Vim and without ever having to reach for the
mouse.

General Vim things
Other, more general Vim settings that I use globally but might also be nice for
editing markdown

1 " Have lines wrap instead of continue off-screen
2 set linebreak
3
4 " Gives Vim access to a broader range of colours
5 set termguicolors
6
7 " Converts tabs to spaces
8 set expandtab
9

10 " Use two spaces instead of tabs
11 set tabstop=2
12
13 " The same but for indents
14 set shiftwidth=2
15
16 " Keep cursor in approximately the middle of the screen
17 set scrolloff=12
18
19 " Disable mouse support
20 set mouse=

3

https://github.com/plasticboy/vim-markdown

In all, I’m hoping that the work I’ve done today for improving my markdown
workflow will help me create a more effective Zettelkasten. The big thing was
really being able to follow internal links around because that’s the main thing
with keeping a Zettelkasten: following your ideas to see where they lead and
discovering what connections you can make to form entirely new ideas. Mine
will be stored in Gitea for now but I’m thinking about putting it here at some
point. It would be cool to have a map of my own mind very easily accessible
from anywhere.

Figure 1: screenshot of my setup

Edit
Time stamps

1 " Insert timestamp at the end of the line in this format:
20200527T113245

2 nnoremap <C-t><C-s> m'A<C-R>=strftime('%Y%m%dT%H%M%S')<CR>

Portable autocmds

Put all the autocmd lines in the if statement so they don’t throw errors when
the config is added to a version of vim without autocmd support

1 " Only enable autocommands when Vim supports them
2 if has("autocmd")
3 ""
4 " Markdown Configuration

4

https://git.nixnet.xyz/Amolith/zettelkasten

5 ""
6 " Spellcheck in British English
7 autocmd FileType markdown setlocal spell spelllang=en_gb
8 " Automatically open Goyo
9 autocmd FileType markdown Goyo

10 " Hide plaintext formatting and use color instead
11 autocmd FileType markdown set conceallevel=3
12 " Disable cursor line and column highlight
13 autocmd FileType markdown set nocursorline
14 autocmd FileType markdown set nocursorcolumn
15 endif

I won’t keep editing this post to provide updates on my config. Instead, I
recommend looking at my “production” version on Gitea.

This was posted as part of #100DaysToOffload, an awesome idea from Kev
Quirk. If you want to participate, just write something every day for 100 days
and post a link on social media with the hashtag!

5

https://git.nixnet.xyz/Amolith/dotfiles/src/branch/master/dotfiles/pc/.config/nvim/init.vim
https://100daystooffload.com/
https://fosstodon.org/@kev/104053977554016690
https://kevq.uk/
https://kevq.uk/

	Visuals
	Spell check
	Goyo
	vim-markdown
	General Vim things
	Edit
	Time stamps
	Portable autocmds

